

What determines the quality of a liming material?

- Purity
 - Calcium carbonate equivalent
 - Determined in the laboratory
- Fineness
 - Particle size
 - Dry sieve analysis

Calcium Carbonate Equivalent (CCE) or Purity

 Neutralizing power per weight of material relative to pure CaCO₃

$$CaCO_3 + 2H^+ \iff Ca^{2+} + CO_2 + H_2O$$

 $Ca(OH)_2 + 2H^+ \iff Ca^{2+} + 2H_2O$
 $\frac{100 \text{ g/mol}}{74 \text{ g/mol}} \times 100 = 135 \% \text{ CCE}$

CCE Values (Purity Factor)

Table 6-5. Liming materials and their calcium carbonate (CaCO₃) equivalent

Liming material	Neutralizing agent	CaCO ₃ equivalent of pure material (%)		
Dolomitic limestone	CaCO ₃ •MgCO ₃			
Papermill lime sludge	Mainly CaCO ₃	te divinto complications		
Marl	Mainly CaCO ₃	variable		
Calcitic limestone	CaCO ₃	100-		
Water treatment lime waste	CaCO ₃	variable		
Wood ash	K ₂ CO ₃ , CaCO ₃ , MgCO ₃	20–90		
Fly ash	CaO, Ca(OH) ₂ , CaCO ₃	variable		
Hydrated lime	Ca(OH) ₂	135		
Air-slaked lime	Ca(OH) ₂ + CaCO ₃	100–135		

^{*} According to the Wisconsin Lime Law, one cubic yard of papermill lime sludge is equivalent to one ton of aglime having a neutralizing index of 60–69.

Fineness

Sieves Used By State

- Iowa 4, 8, 60 mesh
- Illinois 8, 30, 60 mesh
- Minnesota and Wisconsin 8, 20, 60 mesh
- Michigan 8, 60 mesh

Effect of Particle Size on Soil pH over 3 years

Relative lime efficiency and rate with particle size

Wisconsin

Table 2. Effect of various rates of dolomitic lime sizes on the pH of Withee silt loam

Fraction		S	oil pH*—	
(mesh size)	1 mo	1 yr	2 yr	3 yr
O ton/a lime				E ISA
_	4.96	5.18	5.23	5.30
2 ton/a lime				
20-40	5.04	5.39	5.70	5.91
40-60	5.12	5.52	5.82	6.05
60-100	5.18	5.64	5.94	6.03
< 100	5.44	5.58	5.97	6.03
6 ton/a lime				
8-20	4.98	5.28	5.78	6.10
20-40	5.17	5.66	6.15	6.40
40-60	5.29	5.81	6.40	6.50
60-100	5.33	5.95	6.48	6.60
< 100	5.73	6.19	6.59	6.61
16 ton/a lim	e			
8-20	5.41	5.66	6.24	6.47
20-40	5.35	5.99	6.50	6.71
40-60	5.56	6.10	6.63	6.81
60-100	5.70	6.21	6.73	6.82
< 100	6.17	6.45	6.97	6.98

^{*} Each value represents the average of three replicates. Adapted from Love et al. (1960)

Total Fineness Efficiency in IA

Sieve	% of Particles Passing Each Screen	Fineness Factor	% Available Based on Fineness
4-mesh	100	0.1	10
8-mesh	90	0.3	27
60-mesh	55	0.6	33
	Total Fineness	Efficiency	= 70

Example limestone material

Effective Calcium Carbonate Equivalent (ECCE) in IA

ECCE =

Example:

- Total fineness efficiency = 70
- CCE = 92 %; Moisture = 2 %

$$\frac{70}{100}$$
 X $\frac{92}{100}$ X $\frac{(100-2)}{100}$ X 2000 = 1,260 ECCE

$$\frac{1,260}{2,000} = 63 \% ECCE$$

Lime Recommendation in IA

6 inch incorporation depth		
Target pH 6.5	Target pH 6.9	
CaCO ₃ to ap	ply (lb/acre)	
0	1,100	
600	2,700	
2,100	4,400	
3,500	6,000	
5,000	7,700	
6,400	9,300	
7,900	10,600	
	Target pH 6.5 CaCO ₃ to apply 0 600 2,100 3,500 5,000 6,400	

Adjusting Iowa's Lime Recommendation for Lime Quality

Example:

Crop Rotation: corn-soybean

Soil test pH: 5.7

Buffer pH: 6.6

Target pH: 6.5

Limestone ECCE: 63 %

Lime recommendation from previous chart = 2,100 lb/acre

Adjustment for lime quality =
$$\frac{2,100}{0.63}$$
 = 3,300 lb/acre

Lime recommendation adjusted for lime quality

Calculating the Fineness Factor of a Liming Material in WI

Example 2: Lime B (90% calcium carbonate equivalent)

Screen size	Screen analysis		Effectiveness factor		
	%			i fele	delle alot
greater than 8 mesh	5.0	x	0.0	1	0.0
8 to 20 mesh	25.0	x	0.2	-	5.0
20 to 60 mesh	20.0	x	0.6	=	12.0
less than 60 mesh	50.0	x	1.0	=	50.0
			Total	-	67.0

IA: Fineness factor

WI: Fineness factor

IA: Total Fineness Efficiency

Neutralizing Index (NI) in WI

- In Wisconsin, lime quality is listed by neutralizing index
 - NI = Fineness factor x Purity factor
 - Lime with CCE of 90% and fineness of 67
 - $NI = 67 \times 90\% = 60.3$
- Lime requirement (LR) in Wisconsin is given for NI of 60-69 and 80-89
 - If liming material has a NI different than above then, LR (T/a) = T/a of T/a of

Illinois Terminology

- Effective neutralizing value (ENV)
 - = ENV = total fineness factor x (% CCE/100)
- Correction factor
 - = ENV of typical limestone (46.35) ENV of sampled lime material
- Correction factor x LR = T/a of lime material needed

Lime requirement of typical limestone

Minnesota Terminology

- Effective neutralizing power (ENP)
- Lime recommendations made in terms of:
 - Ib of ENP per acre
- Total Neutralizing Power (TNP) = CCE
- Fineness Index (FI) = total fineness efficiency
- % ENP of a lime material =
 - % TNP x FI x % Dry Matter = % ENP

From: FS-05957

See also: FS-05956 and BU-06240-S

Remember

- Lime recommendations (LR) are based on specified plow depths
 - If actual plow depth differs from what is used in the calculations, then LR must be adjusted

 Terminology of LR in different states in different but the concept is similar

